ARGUING A POSITION

feeding them clichés, counselors and professors should point out the practical value and applications of a broad education in the liberal arts. It is difficult to persuade some college students that becoming a better person is an important goal of higher education. Many students want a college education so that they can make more money and have more power. This is the perceived value of a higher education in their world.

WORKS CITED

Wolves in Yellowstone
Keely Cutts
The Catholic University of America
Washington, D.C.

Yellowstone National Park, part of the states of Wyoming, Montana, and Idaho, is the center of a controversial issue. From 1872, when the park was founded, until the 1920s, the gray wolf was an integral part of Yellowstone ecology. But by 1926, the U.S. government had successfully eliminated all the wolves in Yellowstone National Park. But now legislation has been proposed to reintroduce the wolf to Yellowstone. The legislation would allow for a limited reintroduction of several packs of the Canadian gray wolf, which is very much like the wolf that was part of Yellowstone’s original environment. The total number of wolves is not to exceed one hundred. On both sides of the issue—those for the return of the wolf into the park and those against it—emotions run high. But once the hyperbole surrounding the reintroduction of the wolves is swept away and one scrutinizes the advantages and disadvantages of the reintroduction, there is little reason to continue questioning the benefits of returning gray wolves to Yellowstone National Park.

One of the most compelling reasons for the return of the wolf to Yellowstone is that human intervention led to the wolf’s disappearance. Since humans created the ecological void, we have a responsibility to return the endangered animal to its original habitat. As a member of the federal government’s endangered species list for twenty-four years, the gray wolf is the only endangered or threatened animal indigenous to the park not to have its own recovery program (Gallagher 39). Wolves were an integral part of the wilderness of the area now known as Yellowstone National Park for nearly two million years before the United States government sanctioned the program to eradicate the wolf population in the lower forty-eight states (Begley and Williams). Since 1926, when the last pair of indigenous gray wolves were killed in the Yellowstone area, the animal has not been seen in its ancestral home (Plummer and Shaw 105). Without the

human intervention that resulted from hundreds of years of misconceptions and biases, it is unlikely that wolves would have disappeared from the Yellowstone area.

Another reason that it is important to return the gray wolf to Yellowstone is the ecological imbalance caused by the wolf’s disappearance. While many of the people near Yellowstone fear that the introduction of a new set of Canadian gray wolves will create an imbalance in the park’s ecosystem, the truth is that their presence will actually improve the park environment (Gallagher 37). According to biologists, the wolf’s absence has “caused a serious ecological imbalance” (Gallagher 37). Without the wolves to prey on the many elk, bison, and deer, the populations of those groups have expanded to such numbers that they are overgrazing and many die every winter from lack of food (Begley and Williams). The wolves will help keep the numbers of larger animals, such as deer, elk, moose, and bighorn sheep, in balance and remove the old and ill animals from the herds, creating a healthier gene pool. Also, with the natural reduction of grazing animals, the local flora, which has been reduced due to overgrazing, will have a chance to reestablish itself.

Opponents to the reintroduction argue that the wolves will kill large numbers of the animals in the park, which will have far-ranging effects. Many fear the drop in game will result in less profit from hunting licenses, meaning less revenue for the surrounding states (“NRA”). It is more likely that with the projected one hundred animals reintroduced into the park, the elk population in particular would drop from 3,329 to 3,165, a difference of only 164 animals (Williamson 58). The wolf predation should only involve the older and weaker of the herds, benefitting the herd population as a whole. The fear that the elk, bison, and deer population would disappear with the return of the wolves to the park seems to be unfounded. Wolf advocate and founder of the Wolf Fund, Renee Askins, notes “the only time that [she] can recall when one animal did in another with such a vengeance was the great turn-of-the-century wolf hunts” (qtd. in Dawidoff 44).

In addition to the issues of responsibility and ecology, the challenge of wildlife management is involved in the return of the wolves to Yellowstone. Because Yellowstone is a natural habitat for wolves, and since other areas in the United States where the gray wolf can be found are few, the return of the gray wolf to the park is essential. A total of only 1,250 gray wolves can be found in the states of Minnesota, Wisconsin, and Michigan. The introduction of Canadian gray wolves to the park could significantly change the status of the endangered animal (Begley and Williams). In the event that some new disease should strike the wolf population in the lower United States, it is entirely possible that the only remaining wolves in the country would be found in Alaska (Begley and Williams). Opponents to the reintroduction argue that in Alaska there is a gray wolf population of nearly 5,000 and there is therefore no need to expand gray wolf territory. Those wolves, however, are for the most part cut off from the lower forty-eight states, and even that territory is dwindling, as people continue to develop more and more of Alaska (Begley and Williams). Yellowstone, with 2.2 million acres, or 3,472 square miles (larger than the states of Delaware and Rhode Island combined), would provide the indigenous park animal sufficient area to increase and thrive, without infringing upon animals outside the park.

The most explosive and emotional aspect of reintroducing wolves to Yellowstone involves the wolves’ impact on the lifestyle and livelihood of the people living near the park. Hunters and officials of surrounding state governments have their concerns, and ranchers who make a living herding cattle have fears for their livestock. Each of these issues causes concern for all involved, but even with these concerns, I believe the return of the gray wolf is still the best option.

Hunters believe reintroducing the wolves will reduce the populations of the elk, deer, and bison to such low levels that they will not be able to be hunted. The hunters further believe that because of the gray wolf’s status on the endangered species list, hunters will be unable to hunt the predator, as they would hunt a non-endangered predator under similar circumstances (Williamson 58). Their concerns seem groundless, for as I mentioned earlier, there is a minimal projected drop in herd populations, and in other wolf-populated areas, wolves contribute to only 6 percent of big-game deaths. In addition, once the wolf population has been firmly established, some licenses might be granted for wolf hunting (Gallagher 41).

People are also concerned with how the reintroduction of wolves will affect those states adjacent to the park, since some states depend on revenues from hunting licenses. With the reintroduction, the U.S. Fish and Wildlife Service would require the states around the park to survey the populations of elk, deer, and bison for two years without providing funding, and many feel the extra cost would detract from other wildlife programs already run by the states (“NRA”). While these concerns are valid, the small projected decrease in game populations would be unlikely to significantly
decrease the demand for hunting licenses, and the non-subsidized survey would only be required for two years. Most states already conduct these surveys and would only need to conduct them sooner than they might otherwise.

Objections from ranchers near Yellowstone pose a more serious obstacle to reintroducing gray wolves to the park. Many ranchers believe the wolves pose a threat of tremendous financial losses. Jim Magagna said about the situation, “We can lose animals to bears, eagles, coyotes—and now they want to add one more factor. There are few old-timers left who can tell you harrowing tales of wolves” (qtd. in Satchell). Most ranchers hate the wolf passionately, expressing their feelings in comments like, “Why not invite the Mafia to move in next door?” (Plummer and Shaw 104). This hatred stems mostly from folklore about the damage caused by the original gray wolves of Yellowstone before their eradication more than seventy years ago.

The truth is that none of the 392 land allotments for grazing surrounding Yellowstone is directly linked to the park. Wolves rarely attack and kill livestock, except in the absence of their normal prey (“Local Heroes”). The numbers of cattle lost to wolf predation in areas such as Minnesota and Montana are one in every 8,000 and one in every 25,000 respectively. In the case that ranchers do have problems with wolves, a wildlife support group, Defenders of Wildlife, is developing a fund to help cover the costs of farmers and ranchers who lose money due to wolf attacks (Skow 13).

Finally, the fear of those surrounding the park that wolves will attack people should not keep wolves out of Yellowstone. In modern history, there has never been an unprovoked attack on a person by a non-rabid wolf: in the ninety-seven-year history of the wolf in the Algonquin National Forest in Canada, “[o]nly one person has been injured by a wolf—a little girl who shone a flashlight in a wolf’s eye and was scratched” (Plummer and Shaw 105–106).

The controversial reintroduction of the gray wolf into Yellowstone is more than just the return of a native animal to its original habitat; it will also involve overcoming misconceptions and releasing the wolf from its mythology (Askins 17). But while people’s fears color their perceptions toward the reintroduction, the return of the wolf to the park will help create the environment that existed in 1872, when 2.2 million acres of land was declared Yellowstone National Park.

WORKS CITED

Cornell University, points out that “people are beginning to realize it doesn’t make sense to pay heavy school taxes when the audience you’re teaching is asleep” (qtd. in Bettelheim 556).

WORKS CITED

Many hospitals have discovered the advantages that electronic medical records (EMRs) have to offer. Traditional paper-based medical records are often confusing, incomplete, illegible, lack a distinct chronological sequence, can only be in one place at one time, and are often unavailable for a doctor’s review (Fischer and Blonde 43). In fact, the Regenstrief Institute; Harvard Pilgrim Health Plans; the University of North Carolina; the University of California, San Francisco; the MacNeal Health Network; Kaiser Permanente’s Northwest Region; and Kaiser Permanente of Ohio have all supplemented their paper-based medical records with EMRs because EMRs are always available, legible, and organized (Khoury 34). One hospital with computerized records conducted a study that determined patients were released one day earlier and had bills averaging almost $900 less than patients at hospitals that used traditional paper records. Additionally, “[c]omputerized records also make statistical research on diseases and treatments easier” (Baase 21).

Despite all the benefits of EMRs, their introduction and use have been met with some resistance, particularly from patients concerned about their privacy and leery of the new technology. Dr. Mansel Kevwitch, who practices in Bellingham, Washington, sums up patients’ unease and anxiety: “[E]ven having a [paper] chart sitting out at a nursing station with a patient’s name on it could create an issue” (qtd. in “Urologists” 21). In fact, studies have shown that when an individual is hospitalized, approximately seventy-five to eighty people see his or her records (Baase 61). A patient’s medical record is highly personal and can contain sensitive information on alcoholism and addiction, prescribed medications, sexually transmitted diseases, and psychiatric history (Baase 57). In unauthorized hands, this information could be used to isolate or exclude someone from society, deny
someone medical treatment, or even to cancel someone's health or life insurance policies. It could also affect a person's current or future employment opportunities and make obtaining health insurance difficult if not impossible. Additionally, many people, regardless of the sensitivity of their information, just don't want the details of their medical histories and treatments made public.

While there is no absolute protection against a patient's file—whether paper or electronic—being compromised, a well-designed and regulated EMR system adds a layer of security measures, such as ID codes and passwords, limited levels of access, audit trails, and encryption, unmatched by traditional medical file systems. Individually, each of these measures is a powerful tool against potential privacy violations, but taken together, they help to make a patient's personal and sensitive information as secure as possible.

The first level of security is the implementation of ID codes and passwords. Any person attempting to enter the EMR system would be required to enter his or her unique ID code and password (Baase 61). When an employee left the hospital, his or her ID code and password would be deactivated, preventing that employee—or anyone else—from using it again to access the system. This would prevent situations like the one that happened at Newton-Wellesley Hospital in Newton, Massachusetts, where an employee—a convicted child-rapist—allegedly used a former employee's password to gain access to phone numbers of young female patients and then used the information to make harassing telephone calls (Hagland 20).

Although ID codes and passwords are effective, an individual could steal a hospital employee's ID information and gain access to the EMR system. To prevent any long-term use of stolen access information, users' ID codes and passwords could be changed on a regular basis. This interval would be long enough to allow the staff sufficient time to memorize their unique passwords, but it would also be short enough to limit how long anyone using a stolen ID and password could access the EMR system.

The second layer of security is to limit levels of access to the EMR system and to grant only certain people "rights" to perform certain functions inside the system and to view only certain parts of a patient's file (Baase 61). Individuals would have access only to the specific pieces of information in a record that they need in order to conduct their job; changing or deleting files could only be done by authorized personnel with the correct level of access, which would be signified by the ID code and password assigned to them. For example, doctors would have full access to a file, including "rights" to enter changes. When doctors enter their ID codes and passwords, the EMR system would recognize them as doctors, granting them full access to files. Billing clerks would have access only to billing-related information, not the entire contents of a file. When billing clerks enter their ID codes and passwords, the EMR system would recognize them as billing clerks, granting them only limited access to files.

Another method of securing patients' records would be to grant access to the EMR system only to doctors. Doctors, however, are not the only individuals who need access to the files in a hospital, and limiting file access only to doctors would require two complete sets of records, paper and electronic, defeating the purpose of implementing an EMR database and also preserving the risk of unauthorized access to paper records.

The implementation of unique ID codes and passwords would make audit trails, the third layer of security, possible. An audit trail is a history of a patient's file. It records how many times the file has been accessed, whose ID and password were used, and when the access occurred. If a hospital suspected file tampering or other misconduct, it could examine the audit trails for any peculiar occurrences. Having assigned unique ID codes to each employee, the hospital would be able to track who made what access and when. Also, audit trails would discourage individuals from meddling in patients' files because every file access and keystroke would be recorded electronically, making it very easy to catch people who misuse the EMR system.

But what happens when a hospital suspects someone is misusing the EMR system? Who will take the time to review the audit trails? Of course, hospitals will have to hire information security officers and managers to police the system, which could be costly, but these new EMR employees would replace employees who had previously found and delivered old paper charts and files (Hagland 20). This, too, would limit how many people had access to patients' information.

Within the hospital, ID codes and passwords, limited levels of access, and audit trails would minimize the possibility of a patient's file being accessed by someone without authorization. The fourth layer of security, encryption—the scrambling of data into a secret code—would protect the EMR system from unauthorized users outside the hospital. Only people with ID codes and passwords would be able to decode and unscramble—decrypt—the files.
However, some fear that EMRs being transferred electronically between hospitals could be intercepted or that a hacker could break into a hospital's computer system. Even if such a breach of security occurred, however, encryption would still protect the system. If the EMR system were encrypted, individual files would have no meaning to an unauthorized user, for without the key for decryption—an ID code and password—the files would be unintelligible and useless. Decrypting information can be a long and difficult process; for this reason, encryption is an effective defense against electronic intercepts and computer hackers.

Once a hospital decides to change from paper records to EMRs, the hospital should ensure that its system is fully protected. Implementing an EMR system with appropriate privacy safeguards could be a costly up-front expense, but studies have shown that hospitals using EMRs save money in the long run, due in part to the reduction in traditional medical records staff and prevented lawsuits stemming from violations of patients' privacy (Khoury 35). Additionally, while not every plan is foolproof, the use of multiple safety precautions, such as ID codes and passwords, limited levels of access, audit trails, and encryption, can help make a patient feel more confident that his or her medical records are secure as possible, even more so than with traditional paper records.

WORKS CITED

As we sluggishly trod over a two-foot deep heap of dry, salty earth, we reluctantly inhaled inescapable, pungent fumes. The odor painfully brought to mind images of waste-stuffed pigs' intestines that had been dipped in a vat of concentrated, rotting fish. Choking on the fumes, we clenched onto our stomachs in disgust and closely examined what lay beneath us. Our feet were drowned by crunchy bits of fish skeletons and rotting pieces of almost-unrecognizable aquatic life. We were encircled by a sea of death—the Salton Sea.

Contrary to the desires of various groups, such as the Salton Sea Authority, that wish to convince others that the Sea houses a perfectly healthy ecosystem, we are convinced the Salton Sea is suffering from numerous environmental problems: an extremely high salinity level, a tremendous abundance of algae, rampant botulism in the fish and bird populations, and an immense amount of pollution from waste dumping and agricultural runoff. Effectively addressing these problems begins with acknowledging that the Salton Sea is, in fact, being drastically affected by a vast range of problems.

In 1901, the California Development Company dug the Imperial Canal from the Colorado River to reach the Salton Sea. The canal's purpose was to divert water for irrigation from the Colorado River just upstream from the Mexican border. Unfortunately, loads of heavy silt started to inhibit the flow of water, and many of the Imperial Valley's residents became worried over the reduced water supply. To alleviate the reduced water supply, the company decided to build an irrigation canal from the western bank of the Colorado River to allow more water to reach the Imperial Valley. But as a result of massive flooding in 1905, “the Colorado River burst through poorly built irrigation controls... Almost the entire flow of the river filled the Salton Basin for more than a year, inundating communities, farms and
PROPOSING A SOLUTION

the main line of the Southern Pacific Railroad” (“The Salton Sea”). By the time the damaged canal was fixed, the present-day Salton Sea was formed. Instead of evaporating over a period of years, as it was supposed to have done, the Salton Sea still lingers because of the agricultural runoff from irrigation in the Imperial and Coachella Valleys (Salton Sea Authority, “Historical”).

A high salinity level is the primary cause for many of the Salton Sea’s resulting environmental problems. The flooding that originally formed the Salton Sea left behind runoff rich in salt. When the breached irrigation canal was finally repaired, the newly formed Salton Sea lost its ability to circulate water and replenish itself to compensate for the extreme evaporation caused by the Southern Californian heat (Miyamoto 12; Wakefield 8). And even today the “annual inflow to the [Salton] Sea averages about 1,300,000 acre-feet, carrying approximately 4,300,000 tons of dissolved salt” (“The Salton Sea: A Brief”). Incredibly, the salinity level in the Salton Sea is 25 percent higher than that of the Pacific Ocean. The high level of evaporation increases the salt concentration and also contributes to the overabundance of nutrients relative to the concentration of water (see Figure 1). It should be recognized that the increasing salt content and the plethora of unused nutrients are injurious to the lives of fish, and many of the fish in the Salton Sea have died off. As water has evaporated, the salt level has risen to the point where fish are no longer living in an environment they can tolerate. The fish that are able to survive may soon be unable to procreate and continue their species.

Some may argue that the concentration of nutrients in the water counteracts the detrimental salinity level and actually helps the fish to live despite the salt. However, the fact is that there is an overabundance of nutrients, which fuels an excessive number of algae blooms, which contributes to the high rates of fish death. Algae feed on the unchecked nutrients and break down bacteria found in the water, a normal metabolic process that leads to anaerobic conditions—a depletion of oxygen—in the Salton Sea, creating a hazardous environment for oxygen-breathing animals, including fish (Rodriguez 10). Fish kill-off in the Salton Sea is only exacerbated by our reluctance to address the problem of high salinity levels and an overabundance of nutrients.

To address oxygen depletion in the Salton Sea, the government introduced a species of farm fish native to Africa and South America called tilapia that feeds on algae and was thought to be a “natural” control to the growth and heartiness of the algae population in the Sea. However, this solution proved to be additionally harmful because, in the oxygen-less water, bacteria known as Vibrio alginolyticus, which the algae do not break down and which carries type C botulism, began to live and thrive and infect the tilapia. Once a fish is infected and becomes a carrier of botulism, it forms lesions, its organs begin to swell, and it literally dies from the inside out (see Figure 2). Birds, which instinctively prey on weaker and wounded fish, eat the botulism-infected tilapia and, in turn, die from the fish-borne disease (see Figure 3).

The tilapia not only failed to control the excessive algae blooms and solve the problem of the oxygen-depleted waters of the Salton Sea, they also have become a threat to sport fishermen. Tilapia are popular commodities in the fishing industry because they can be easily caught. When properly cooked and not left to spoil, the botulism in infected fish will die and not cause any harm to human consumers (“The Salton Sea). Yet eating them can be dangerous if they are...
handled improperly. However, not everyone knows how important it is to handle the fish properly. Failing to inform the public of the infected fish and to instruct them on how to handle the fish is immoral. The tilapia that have been introduced to the Salton Sea in hopes of treating fish kill-off by eating oxygen-depleting algae have only amplified the problem by incubating botulism. This potential threat to human life has made the problem of resuscitating the Salton Sea all the more urgent.

The health of the area is further endangered not only by the high rates of fish and bird death but also by pollution. As organisms die, their corpses contaminate the already polluted water and shore. The entire shoreline is covered with the remnants of fish (mainly tilapia—see Figure 4), contributing to the decaying odor characteristic of the Salton Sea (Rodriguez 10). Also, dangerously high levels of chemicals such as phosphate are present in the waters of the Salton Sea. Phosphate, a compound found in lakes because of waste dumping and contamination from fertilizers, causes algae to bloom in the Salton Sea (Rodriguez 2–3). Advancements in technology and dependency
on urban industries have provoked careless dumping of industrial waste products, such as phosphate (Wakefield iv). Along with the high salinity level, unchecked algae blooms, and botulism-infected, dead, and decaying fish and birds, waste and chemical pollution is another factor that has resulted in the downfall of the ecosystem surrounding the Salton Sea.

The many problems that negatively affect the Salton Sea essentially derive from the water’s high salinity level. Until the salt concentration is dealt with, harmful algae blooms and dead fish and birds will continue to proliferate. Any other attempts to solve the problem, such as the government’s failed effort to control the algae by introducing tilapia to the environment, will only prove to be futile unless the salt level is reduced. Salt has a profound impact on life and cannot be overlooked. Reducing the salinity level has been recognized as an effective technique that would prevent the harm done to the entire environment (which includes bird and fish species), as detailed in the “Draft Salton Sea Restoration Project Environmental Impact Statement/Environmental Impact Report” prepared by the Salton Sea Authority and the U.S. Department of Interior’s Bureau of Reclamation. Individuals must recognize the complexity behind the sufferings of the Salton Sea’s ecosystem. At the Salton Sea, death is a continuous and inevitable cycle of events: (1) the massive amount of salt weakens the numerous fish that are already harmed by pollution from the runoff in the water; (2) the weakened fish are susceptible to botulism; (3) birds that eat botulism-infected fish are infected; (4) the carcasses of dead fish and birds further pollute the environment by adding excessive amounts of nutrients to the water; (5) when the algae feed on these nutrients, they create an anaerobic environment that further weakens the fish; and then (6) the cycle begins again.

Although various solutions have been proposed, some to inhibit algae growth and others to encourage agricultural dumping to compensate for evaporating water, none are as effective as those solutions that directly address the mounting salinity of the Sea. An effective method for reducing the salinity of the Sea, not just temporarily but conclusively, would be to include the Salton Sea in the flow of the Colorado River. Artificial tributaries or aqueducts could be constructed that would direct Colorado River water into and out of the Salton Sea. As circulation of fresh water from the Colorado increases within the Salton Sea, the overall condition of life in the Sea will recover. The reduced salinity level would have a rippling effect on the algae, fish, and birds. The algae would no longer monopolize the oxygen supply, botulism would be less prevalent, and the fish and birds would be healthier. Such a project could be funded, in part, by selling the now cleaner Salton Sea water to surrounding cities, such as Los Angeles and San Diego. In order to end the continuance of death, many steps must be taken, but the first and largest step would be to reduce the water’s salinity.

Those who would argue that building an aqueduct leading into and out of the Salton Sea would be too great an enterprise—since the Colorado River is approximately fifty miles from the Salton Sea—forget that more than one hundred years ago the California Development Company dug the Imperial Canal from the Colorado River to reach the Salton Basin to divert water for irrigation. With the advances in engineering technology over the past one hundred years, constructing artificial tributaries to channel the flow of water into and out of the Salton Sea is a practical, realistic plan.

An alternative solution to constructing aqueducts would be to construct pipelines or a canal between the Salton Sea and the Gulf of California. While a canal between the two bodies of water as a way of exchanging ocean water for Salton Sea water is appealing and would reduce the salinity enough to ensure the health of the birds and fish dependent upon the Salton Sea, one must remember that the Salton Sea sits roughly 220 feet below sea level. Massive flooding would occur if the water in the canal were not controlled through a series of locks, similar to those used in the Panama Canal. However, a series of locks would impede the free flow of water necessary to reduce the salinity in the Salton Sea. If pipelines were to be constructed to carry water from the Pacific Ocean in and Salton Sea water out, the pipes, in order to move the 1,100,000 acre-feet of water in each direction each year required to lower the Sea’s salinity, would have to be 16 feet in diameter and would have to cross miles of rough terrain to reach the Gulf of California, making such a plan horribly impractical (“The Salton Sea: A Brief”).

If an individual were to visit the Salton Sea, he or she would undoubtedly realize that the Sea is not healthy. Upon encountering the noisome smells and the nauseating views of the shoreline, the water, and the diseased and dying aquatic life, it is not difficult to believe that the Salton Sea is suffering severely from a high salt concentration, algae blooms, bird and fish kill-off, and pollution in general. The Sea, a gargantuan body of water presently about 35 miles wide by 15 miles long, provides an environment for the lives of hundreds
of organisms. Ever since the Sea was blockaded, those organisms have suffered. Because the Sea—and the enormous variety of life within it—makes up a large proportion of Southern California’s ecosystem, the overall wellness of Southern California is in part dependent upon the condition of the Sea.

Reviving the Salton Sea is crucial so that its environment can be made healthy, but seemingly no effective methods have been implemented because the problems with the Sea are not taken seriously. Many individuals and groups, such as the Salton Sea Authority, try to avoid disclosing the Salton Sea’s true state. The people in control of the Sea are aware that they will never be forced by authorities to spend money to restore the Sea if the public is not informed of the true situation. There are practical solutions that can be implemented, exemplified in the artificial tributaries proposal. The Salton Sea, accidentally formed by humans, is dying. To save it involves similar human interference; the struggles of the Sea need to be fully acknowledged so that proposed solutions can become a reality in order to save its ecosystem.

NOTE

1. Approximately 75 percent of the “fresh” water that flows into the Salton Sea is agricultural drain water from the Imperial Valley (California).

WORKS CITED

